为您找到"

证明In(n+2)Inn<[In(n+1)]^2

"相关结果约100,000,000个

证明In(n+2)Inn<[In(n+1)]^2

解:证明In(n+2)Inn<[In(n+1)]^2 即证明证明In(n+2)/In(n+1)<In(n+1)/Inn,只需证明f(x)=In(x+1)/Inx在x>2时单调减,因为f‘(x)=[xlnx-(x+1)ln(x+1)]/[x(x+1)(lnx)]<0,x>2.原式得证。

求极限lim{n[In(n+2)-Inn]},n趋向于无穷

n→∞时,ln(n+2)-lnn=ln(1+2/n)等价于2/n,所以原极限=lim n×2/n=2

极限,n趋向于无穷大,lim{n[In(n+2)-Inn]};求极限,n趋向于无穷大,lim...

lim{n[In(n+2)-Inn]}=lim{n[In(1+2/n)]}=lim{n*(2/n)}=2,当s趋向于无穷小时,sin(x)/x=1,同理,n趋向于无穷大,(pai/n)趋向于无穷小,则lim根号下pai*[sin(pai/n)/(pai/n)]=根号下pai

求证In2+In3+...+Inn〉11/6-(1/n+1/(n+1)+1(n+2)),n是正整数

=lnn+ln[(n+1)(n+2)/6]很容易证明n>=4时, (n+1)(n+2)/6<(n-1)!所以ln[(n+1)(n+2)/6]<ln[(n-1)!]=ln2+ln3+...+ln(n-1)所以lnn+ln[(n+1)(n+2)/6]<ln2+ln3+...+ln(n-1)+lnn 所以11/6-(1/n+1/(n+1)+1(n+2))<ln2+ln3+...+ln(n-1)+...

证明In(1+n)<1+1/2+1/3+...+1/n<1+Inn,希望能把步骤写详细点,谢谢了...

ln (n+1)/n < 1/n 各式相加得 ln (n+1) < 1+1/2+1/3+……+1/n 2、令g(x)= lnx - (1- 1/x) ,x>1 g'(x) = 1/x - 1/x² = 1/x (1 - 1/x) >0 g(x)是增函数 ∴g(x) > g(1) = 0 即 lnx > 1 - 1/x 分别令x =2,3/2,4/3,……,...

(1/n)^(1/(1+2Inn)) 当n趋向于无穷大时的极限

n->无穷 lim (1/n)^(1/(1+2Inn))=e^lim[ln(1/n)/(1+2lnn)]=e^lim -lnn/(1+2lnn)=e^(-1/2)

怎么证明(ln(n))/n<n^(-1/2)

Inn-n^1/2)<0,设f(x)=(Inn-n^1/2),则f'(x)=(2-n^1/2)/2n,即当0<x<4时,f'(x)>0,即f(x)为增函数,当x>4时,f'(x)<0,即f(x)为减函数,可知x=4为f(x)的最大值,f(4)=In4-2<0,因为e^2>4,即可得证f(x)<f(4)<0 ...

已知函数f(x)=ax^2-Inx

证明 不太明白楼主前面说的有神魔用 过程 首先证明Inn/(n^4)<1/2en(n-1) n>1 Inn/(n^4)<n/n^4=1/n^3=1/n*n*n<1/2e(n-1)所以 Inn/(n^4)<1/2en(n-1)那么不等式左边=In2/(2^4)+In3/(3^4)……+Inn/(n^4)<1/2e(1/2*1+1/3*2+……+1/n*(n-1))=...
1 2 3 4 5 6 7 8 9

相关搜索