那么,是不是所有的大于2的偶数,都可以表示为两个素数的呢?这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可...
后来人们发觉直接证明这个命题是十分困难的,就想先从"每一个大偶数是二个素因子不太多的数之和"开始着手,设置一个包围圈,逐步将圈缩小进而证明哥德巴赫猜想,挪威数学家布朗首先证明了(9+9),即任意一个大偶数可以写成两个素因子不超过9的数之和,之后又有许多数学家经过多年不懈努力先后证明了(7+7)...
现在用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓的筛法得到的[1]。“a + b”问题的推进 1920年,挪威的布朗证明了“9 + 9”。1924年,德国的拉特马赫证明了“7 + 7”。...
编者注:阅读本文时,可以跳过公式,不会影响理解。自1742年提出至今,哥德巴赫猜想(Goldbach's conjecture)已经困扰数学界长达三个世纪之久。作为数论领域存在时间最久的未解难题之一,哥德巴赫猜想俨然成为一面旗帜,激励着无数数学家向着真理的彼岸前行。对不少人来说,知道哥德巴赫猜想,离不开两个人,陈景润和徐迟。后者...
1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。 今日常见的猜想陈述为欧拉的版本...
9=3+3+3=2+7 10=2+3+5=5+5 11=5+3+3 12=5+5+2=5+7 99=89+7+3 100=11+17+71=97+3 101=97+2+2 102=97+2+3=97+5 ……这张表可以无限延长,而每一次延长都使欧拉对肯定哥德巴赫的猜想增加了信心。而且他发现证明这个问题实际上应该分成两部分。即证明所有大于2的偶数总能...
…、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够...
1742年6月7日,哥德巴赫在信中提出:任何不小于6的偶数,都是两个奇质数之和;任何不小于9的奇数,都是三个奇质数之和。这就是著名的“哥德巴赫猜想”。欧拉深信哥德巴赫的猜想,并表示无法证明。他的话激励了整个数学界。许多数学家试图证明,但直到19世纪末都无进展。证明哥德巴赫猜想的难度巨大。...
哥德巴赫猜想的小史 1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,...
N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。